

Page 1 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

Table of Contents

1. Overall Description of SinOne SC95F Series Touchkey MCU Application Guidelines 2

2. Introduction to SinOne Touch Library .. 3

2.1 Application Types of Touch Library ... 3

2.2 General Steps for Touch Project Development ... 3

2.3 Introduction to SinOne Touch Library Files .. 3

3. Touch Development Process .. 4

3.1 Install the Development Tool .. 4

3.2 Debugging Touch Parameters .. 5

3.2.1 High-sensitivity Debugging Touch Parameters .. 5

3.3 Realizing Function Test of SinOne Software Library ... 13

3.3.1 Porting of High-sensitivity Touch Software ... 13

3.3.2 Porting of High-reliability Touch Software .. 18

3.4 Complete the Integration of User Program and SinOne Touch Software Library ... 24

3.4.1 High-sensitivity Touch Software and User Program .. 24

3.4.2 High-reliability Touch Software and User Program ... 27

3.4.3 Notes ... 29

3.5 Additional Functions – Dynamic Debugging Functions ... 29

3.5.1 High-sensitivity Dynamic Debugging Steps ... 29

4. Appendix ... 32

5. Version Change History .. 37

Statement .. 38

Page 2 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

1. Overall Description of SinOne SC95F Series Touchkey MCU Application

Guidelines

As the application guideline of SinOne SC95F Series Touchkey MCU, this document aims to introduce how to use SinOne

TouchKey library file and how to debug the parameters of Touchkey upper computer. SinOne MCU touch architecture is divided

into high-sensitivity touch mode and high-reliability touch mode, some models have built-in dual-module touch (refer to

specifications for details). High-sensitivity or high-reliability mode can be used by selecting different touch library files and its

characteristics are as follows:

⚫ High-sensitivity mode is applicable for Touchkey, spaced touch key, wheel/slider, proximity sensor and other touch

application with high-sensitivity requirements

⚫ Both high-sensitivity/high-reliability require strong anti-interference capability

⚫ Support up to 31 touchkeys and derivative functions

⚫ Support flexible development software library and easy for development

⚫ Support automatic debugging software and intelligent development

⚫ Partial models can run with low power in MCU STOP mode, and the overall power of the chip upon waking up by

using 12 touchkeys (500mS) can be as low as 22uA@3.3V / 25uA@5V

The user can use SinOne Touchkey library files to select touch mode and fast realize required touch functions easily. For the

most suitable touch mode, see the following table in detail:

Description High-sensitivity Mode High-reliability Mode

Features

⚫ High anti-interference capability, passing

10V dynamic CS

⚫ Super-high Sensitivity

⚫ High anti-interference capability, passing

10V dynamic CS

⚫ Lower power consumption

Applications

⚫ Spring touch key application

⚫ Spaced touch key application

⚫ Proximity sensing application

⚫ Wheel/slider application

⚫ Touch application with high-sensitivity

requirements

⚫ Require low power current

Applicable Mode

Select high-sensitivity mode by loading SinOne

high-sensitivity touch library through the project

Select high-reliability mode by loading SinOne high-

reliability touch library through the project

Library

Description

3.3.1 High-sensitivity Library Touch Software

Library Porting

3.3.2 High-reliability Library Touch Software Library

Porting

Corresponding

Library File

“SC95F8XXX_HighSensitive_Lib_Tn_Vx.x.

x.LIB”

“SC95F8XXX_HighReliability_Lib_Tn_Vx.x.x.

LIB

Notes

⚫ T1 library is applicable to spring type

applications

⚫ T2 library is applicable to spaced

touch type applications with its key

at least 3 or more

⚫ Only applicable to spring type applications

Selection

Description

In general, it is recommended to use this high-

sensitivity mode, which may obtain a better

experience

Only in the following situations, high-reliability mode

is recommended:

A low power current is required and the current can

not be filled in the high-sensitivity mode

Notes for Power Supply of SinOne Series Touchkey MCU Touchkey Chip:
⚫ Power supply range of touch key chip: refer to the specifications of corresponding chip

⚫ Power supply ripple of touch key chip: Recommended working supply voltage ripple magnitude of touch chip

≦ 3%~4% with a maximum of no more than 200mv.

Page 3 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

2. Introduction to SinOne Touch Library

2.1 APPLICATION TYPES OF TOUCH LIBRARY

SinOne SC95F Series Touchkey MCU provides a library file that can be called by the user to reduce the difficulty in

developing user touchkeys.

The library can be divided into the following types:

⚫ Ordinary Touchkey Library

◼ Spring touch library (T1 library for short)

◼ Spaced touch library (T2 for short)

◼ Highly reliable library

⚫ Wheel/slider touch key library

⚫ Proximity sensing touch library

⚫ Low-power touch library (including ordinary low-power touch library, wheel/slider low-power touch library)

The document is to introduce the use of touchkey library and touch debugging upper computer SOC TouchKey Tool

Menu software; the use of wheel/slider library and proximity sensing library will be introduced in the special

application guidelines. For details, see Descriptions for SinOne TK Special Applications

The user shall follow the steps below to realize the functions of touch keys, perfectly combine SinOne touch software library

with the user’s software and finally achieve the product’s functions.

2.2 GENERAL STEPS FOR TOUCH PROJECT DEVELOPMENT

A complete touch project is developed in the following steps:

1. Install the development tool, configure and export the parameters

A specialized touch debugging upper computer software SOC TouchKey Tool Menu provided by SinOne aims to

complete the debugging work through a series of human-machine interaction for the user. The user needs to install

this software and use it with the online programmer DPT52/SC-LINK/SC-LINK PRO. The user can search for the

most suitable touch key parameters of the user’s PCB through the configuration parameters of the software interface,

and export the final relevant parameters to generate the head file to be used in the user project.

2. Realize function testing of SinOne software library

Add the configuration file generated in Step 1 to SinOne touch key library and add the whole library-related files to

the user project for compilation. The simple testing program for the user provided by SinOne can be used to complete

the testing of key functions.

3. Complete the integration of user program and SinOne touch software library

The user can write the other part of the software except the touch key and nest SinOne software library into the user

program to complete the overall functions of the product.

For detailed development operations, see 3 Touchkey Development Process

2.3 INTRODUCTION TO SINONE TOUCH LIBRARY FILES

SinOne touch library is composed of the following files:

SensorMethod.h: This file is the declaration of the program function of touch library. The user needs to refer to this head file

in the main program.

SC95F8XXX_X_X_Vx.x.x.LIB: This file is related to the algorithm of the touch library. The user needs to add this file to

the project for compilation

S_TOUCHKEYCFG.H: This file is the configuration file of touch-related parameters, which is generated by debugging with

SOC TouchKey Tool Menu by the user.

S_TouchKeyCFG.C: This file is composed of the head file of touch parameters and interfaces related to touch library

interaction, the user needs to add this file to the project for compilation. For the ordinary touch library, there is no need to

modify this file.

For wheel/slider touch library and proximity sensing touch library, the parameters need to be configured. Please refer to the

Page 4 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

special application guidelines for details:

Descriptions for SinOne TK Special Applications

3. Touch Development Process

This section is to introduce how to develop the touch project. It should be noted that, for the project development, the

complete touchpad PCBA is also an indispensable part of the project debugging; for touch MCU layout, please refer

to Design Points for SinOne Touch Key MCU PCB. Before the development, make sure that the hardware for the

touch project complies with relevant requirements, which may eliminate the problems maybe encountered during the

development process.

3.1 Install the Development Tool

1) Setup SOC Pro51/SOC Programming Tool

Install SOC Pro51 Vx.xx.exe/ SOC Programming Tool (Visit SinOne website for the latest version).

2) Setup SOC TouchKey Tool Menu

Install SOC TouchKey Tool Menu (Visit SinOne website for the latest version).

3) Upgrade the firmware DPT52/SC-LINK/SC-LINK PRO and update MCU library

The firmware of the online programmer DPT52/SC-LINK/SC-LINK PRO and MCU library files of SOC Pro51/

SOC Programming Tool shall be updated to the latest version from SinOne website).

4) Install the plug-in SOC_KEIL;

Please update the plug-in of SinOne MCU to the latest version from the website. Specific installation method and

notes are as follows:

a. Install the plug-in SOC_KEIL, which can be used to automatically search for the installation directory of KEIL

(C51 version) and install all files in SinOne_Chip/SinOne_Chip_SClinkPRO in C51 directory of KEIL C

installation directory.

b. All files in the directory of SinOne_Chip /SinOne_Chip_SClinkPRO are as follows:

CDB: SinOne MCU development library file

DEMO: SinOne MCU demonstration program

INC: SinOne MCU head file

PDF: Instructions for SinOne SOC programming simulation tool SC-LINK PRO

SOC_Debug_Driver/SCLINK_PRO_Debug_Driver: SinOne simulation plug-in

c. SinOne SOC_KEIL plug-in is to create a specified list for SinOne MCU, which will not override the original

MCU list of KEIL C.

d. If it is unable to install SOC_KEIL plug-in ,please confirm if your KEIL is C51 version.

5) Hardware connection sequence: PC USB-->DPT52/SC-LINK/SC-LINK PRO(VCC/GND/CLK/DIO)-->User

PCB(VCC/GND/tCK/tDIO); test and confirm if the connection is normal. In the debugging process, the hardware UART

resources are required, so reserve PCB routing interface for UART, as shown in following figure for SCLINK PRO

wiring.

Page 5 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

6) Program static debugging code hex file to SC95F8XXX IC of user PCB

Open SOC Pro51/SOC Programming Tool, select MCU model used for the project, load the hex file of static

debugging code, click "Program" and close SOC Pro51/SOC Programming Tool after completion, then plug in the

USB and power it on. (Note: LVR shall be set to be lower than the supply voltage, for example, if the supply

voltage is 3.3V, LVR in the Option must choose a gear lower than 3.3V)

See the diagram of SOC Pro51/SOC Programming Tool below:

For the operating steps of high-sensitivity debugging, see: 3.2.1 High-sensitivity Debugging Touch Parameters

For the operating steps of high-reliability debugging, see: 3.2.2 High-reliability Debugging Touch Parameters

3.2 Debugging Touch Parameters

3.2.1 High-sensitivity Debugging Touch Parameters

1) Open Adjustment selection of Touch

SOC Pro51 Software SOC Programming Tool Software

Page 6 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

2) Configure the parameters to go to touch parameter debugging

 Select MCU model used for the project and check TK channel used, as shown in the figure below:

 Set up the basic information of the application, as shown below:

Application Type: Select Spring Key/Spaced Key/Proximity Sensing based on the project needs (it is

temporarily not supported for matrix key application).

Key Type: It is required to be set for spring key application. No settings are required for other

applications.

 Select single key or combined (double) key according to the actual project.

Space Distance: Set between 0 and 3mm for spaced key application. No settings are required for other

applications.

(For farther distance, please contact SinOne engineer for assistance)

Debugging voltage selection: Related to VDD supply voltage of SinOne MCU chip in the project.

Select 5V debugging for 5V project and 3.3V debugging for 3.3V project.

 Configure the parameters related to touch algorithm operation (keep the default parameters unchanged, the

following is relevant contents of each parameter)

Key Confirmation Counts: The default value is recommended. This parameter determines the key response

speed of touch algorithm running, which is related to one round of key scanning time; if such time is 12MS and

key confirmation counts are 5, the response time for the key is 5*1 2MS=60MS.

Auto Calibration Counts: The default value is recommended. This parameter determines the speed of

initialized baseline, the more times the auto calibration is done, the stabler the baseline will be and the longer the

time will be.

Maximum Response Time of Key: The default value is recommended. This parameter determines the

continuous response time of key in runs. After the key time reaches specific times, the key’s sign will be

cleared.

Dynamic Update Baseline Time: The default value is recommended. This parameter is used to deal with the

update speed of key up and remains the default value unchanged

Baseline Update Rate: This parameter is used to update the baseline.

Baseline Reset Rate: The default value is recommended. This parameter determines the speed of baseline

reset. The larger the value is, the slower the update rate will be.

Filter K Value: The default value is recommended.

Anti-interference Setup: Used to scan variable frequency of clock and conducive to passing EMI test; when

EMI test is required for the project, select to open 1:12bit. Note: For low power applications, it is not allowed to

enable anti-interference setup.

Reference Voltage: The default value is recommended.

Debugging Mode Select: The default value is recommended. Static debugging is to confirm TouchKey

parameters and dynamic debugging is to collection data in the application; here we select static debugging, and

dynamic debugging will be introduced in the subsequent chapter.

 Check the complete TK channel interfaces required for the project, after the steps mentioned above are

completed, click “OK”; At this time, the channel will be locked and can not be set up. To change the channel, click

“Cancel” button.

Note: Since UART resources on the programming interface are needed for touch debugging and some models of

Page 7 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

programming interface features TK, the parameters of these two channels can not be debugged during the process of

touch debugging. To use these two TK interfaces, please contact SinOne engineers for assistance.

3) Touch Key Parameter Self-adaption

Click “OK” to enter touch key parameter self-adaption phase, then wait for tens of seconds to several minutes,

which are related to the number of keys, until the popped-up prompt window is closed and the self-adaption is

completed. During this process, the user needs to install the machine and do not perform any operation on

or around the panel.

4) Conduct Single-channel Debugging

 Click green button of corresponding channel in Channel Debugging Area to enter Single-channel Debugging

Interface

 Set up touch-related parameters

 In general, after the self-adaption process for the key, the user does not need to modify the above-mentioned

parameters and just click to start the debugging.

Page 8 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

 Clock: Remain the default value unchanged

Resolution: Remain the default value unchanged

Gains: Remain the default value unchanged

Scanning Cycle: Setup range 1-32 in 128us. The larger the value is, the longer the scanning time of this key will

be, and the larger the variation will be.

Threshold Setup: Setup range: 1-8. The larger the value is, the lower the sensitivity will be. If the set value is 5, the

threshold is set as 50% of variation; when the data variation exceeds the threshold, it is considered that there is the key. The

recommended value is 5.

 Click “Start Debugging” button to debug

It is divided into touchless process and touch process.

Please operate as prompted. The process will take about 15 seconds.

Touchless Process:

Touch Process:

Note: TK channel displayed in the software is consistent with MCU specifications. Please follow the

actual PCB layout to operate corresponding keys, or else, the result will go wrong.

Single-channel Debugging End: If the debugging is passed, the icon in the interface below will turn green:

In the debugging
phase of
common keys,
vertically place
the finger closely
on the sensing
surface of the
key

In the
wheel/slider
debugging
phase, vertically
place the finger
closely over the
sensing surface
of sawtooth
center, as shown
in the white area
on the left

Page 9 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

If the debugging fails, it will turn red.

Failed items will be marked in red accordingly.

Debug each key in turn until all keys are passed.

Note: Observation items are attached (non-essential process for debugging)

Click “Graph Display” button and press “Start” button to observe data changes in real time

 Conduct Key Diagnosis (Diagnosis is performed only for ordinary touch keys other than wheel/slider;

there is no need to operate for wheel/slider keys during the process of diagnosis, and wait until it is switched

to ordinary keys for diagnosis)

Key Diagnosis is the process to analyze the interaction between keys. If such interaction is large, it may

Page 10 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

influence the performance of keys.

Click “Start Diagnosis” button

Note: TK channel displayed in the software is consistent with MCU specifications. Please follow the

actual PCB layout to operate corresponding keys, or else, the result will go wrong.

If the diagnosis is failed, please adjust the hardware Layout according to the diagnosis results and

adjustment scheme. Below is the prompt of failed diagnosis:

 After completing key diagnosis and passing the test, click “Export Configuration Information” button to

generate the configuration file S_TOUCHKEYCFG.H, and then save the configuration file generated

(please properly keep it properly for subsequent reference to porting and merging of touch software library).

Page 11 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

The contents of S_TOUCHKEYCFG.H are as follows:

The definitions of configuration files are as follows:

Data Type Description Range

SOCAPI_SET_TOUCHKEY_TOT
AL

Number of Channel 1-31

SOCAPI_SET_TOUCHKEY_CHA

NNEL

Corresponding Data Bit of

Channel

0x00000001-0xfffffffff

TKCFG[0] Application Type 1-3 0 for spring 1 for spaced

3 for proximity sensing

TKCFG[1] Key Type 0-10 for single key, 1 for
double keys

Page 12 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

TKCFG[2] Remain the default value of 0

unchanged

TKCFG[3] Key Confirmation Times 3-50

TKCFG[4] Remain the default value of 10

unchanged

TKCFG[5] Maximum Output of Key 0-5000

TKCFG[6] Remain the default value of 200

unchanged

TKCFG[7] Remain the default value of 100

unchanged

TKCFG[8] Remain the default value of 2

unchanged

TKCFG[9] Remain the default value of 0

unchanged

TKCFG[10] Remain the default value

unchanged

TKCFG[11] Remain the default value

unchanged

TKCFG[12] Remain the default value

unchanged

TKCFG[13] Remain the default value

unchanged

TKCFG[14] Remain the default value of

65535 unchanged

TKCFG[15] Remain the default value of

65535 unchanged

TKCFG[16] Noise Value 3-50

TKChannelCfg[][0] Remain the default value

unchanged

TKChannelCfg[][1] Remain the default value

unchanged

TKChannelCfg[][2] Remain the default value

unchanged

TKChannelCfg[][3] Scan Cycle 0x01-0x20

TKChannelCfg[][4] Remain the default value

unchanged

TKChannelCfg[][5] Remain the default value

unchanged

TKChannelCfg[][6] Threshold high 8-bit 0x00-0xff

TKChannelCfg[][7] Threshold low 8-bit 0x01-0xff

The debugging process of touch keys is completed.

If the user needs to fine tune the sensitivity after debugging, change the value of TKChannelCfg[][6]

and TKChannelCfg[][7] with the former of the higher 8 bits of the threshold and the latter of the lower

8 bits of the threshold, the lower the value is, the higher the sensitivity will be, vice versa. It is

recommended to debug several machines so as to get the compromised effect of parameters and remove

the influence of materials on consistency.

5) Additional Functions – Key/Wheel/Slider Hand Feel Simulation Function Testing:

Main Functions: After performing “Start Diagnosis” and “Export Configuration Information”, test

the hand feel of the key parameters on the upper computer directly and observe if the parameters adapt

to the whole machine.

The key type for simulation function testing includes: key, slider and wheel.

The test procedures are shown as follows:

1) After clicking “Start Diagnosis” and “Export Configuration Information”, select a certain type of key, take

the wheel as an example.

Page 13 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

2) Key/Slider/Wheel Test: Select Wheel Test

 Set up scale value: the maximum scale of wheel

 Set up wheel channel order: Select the order based on the wheel TK channel order on the hardware, for

example, the wheel below is arranged in the order of TK0->TK1->TK2->TK3

 Click Start and slide the wheel key on the hardware to observe the wheel effects and hand feel on the upper

computer.

 After testing, click Stop button to close the interface.

Note: Reset button is to reset before start.

 Notes:

⚫ “Slider/Wheel Test” and “Key Test” can not be set up repeated or be shared.

⚫ After setting up slider/wheel test, select “Key Test” for this TK channel again, it is unable to test

single key functions.

⚫ To experience slider/wheel/key test function, it is required to update the latest high-sensitivity

debugging file.

⚫ For key test items, directly click Start with no need to set up scale parameters. Click corresponding

TK to observe the key situations on the upper computer.

3.3 Realizing Function Test of SinOne Software Library

3.3.1 Porting of High-sensitivity Touch Software

Page 14 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

1. Introduction of Library File

1) Spring Library File (T1 library for short, SC95F8XXX_HighSensitive_Lib_T1_Vx.x.x.LIB)

2) Spaced Library File (T2 library for short, SC95F8XXX_HighSensitive_Lib_T2_Vx.x.x.LIB)

The following is the brief introduction to T1/T2 library: (4 files contained)

File Application Description

SC95F8XXX_HighSensitiv

e_Lib

Library file, to realize the detection

algorithm of touch keys

Sensormethod.h Head file, to provide the interface

function for user to call

The declared functions are

available for external call

S_TouchKeyCFG.C C file, to realize the interaction between

the touch parameters and the library

S_TOUCHKEYCFG.H Head file, to provide macro for the user

to modify the parameters

2. Resources Used for Lib

Library Series RAM Occupied Memory ROM Occupied Memory

(T1 Library)

Size occupied of

SC95F8XXX_HighSensitiv

e_Lib and

S_TouchKeyCFG.C

data area: 49.3 bytes;

Xdata area: 18 bytes; unrelated to the

number of keys; all required to use;

Xdata area: 15 Bytes for each key; for

3 keys:

Data area 49.3 bytes, xdata area

18+3*15=63 byte

The size of ROM used by

the library is about 3.6K,

and adding or reducing

several keys may not

influence the size basically,

and the difference is no

more than 200byte

(T2 Library)

Size occupied of

SC95F8XXX_HighSensitiv

e_Lib and

S_TouchKeyCFG.C

data area: 59.3 bytes;

Xdata area: 10 Bytes; unrelated to the

number of keys; all required to use;

Xdata area: 15 Bytes for each key; for

3 keys:

Data area 59.3 bytes, xdata area

18+3*15=55 byte

The size of ROM used by

the library is about 3.6K,

and adding or reducing

several keys may not

influence the size basically,

and the difference is no

more than 200byte

 Note: The memory size of each chip library has little difference, and the specific memory size is subject to

SinOne data.

3. Descriptions for Calling Lib API Functions

Function Application Description

TouchKeyInit(void)

Initialize the touch

keys

1. Call once after power-on and reset;

2. This function configures the user-selected

key channel and key parameters by using

S_TOUCHKEYCFG.H parameters and

initialize the Baseline;

3. The time to execute this function is about

200-500mS, depending on the number of the

key, key scan time and auto calibration times;

approximately time for every N more keys: 54

uS *N keys for 24M basic frequency; 48 uS *N

keys for 16M basic frequency; 45 uS *N keys

for 32M basic frequency

TouchKeyRestart(void)

Enable the scan of

the touch keys

1. The user’s main program controls when the

key scanning is initiated;

2. After the key scanning is initiated and

before the scanning of the touch keys is

Page 15 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

completed, do not operate the touch key

channel, such as IO of touch key channel, or

else, the touch key function can not be

realized.

Unsigned long int

TouchKeyScan(void)

Process the

algorithm of the

touch keys

1. Call the algorithm after one round scan of

the touch key is completed;

2. TouchKeyRestart() can not be recalled

before this function is called by the user;

otherwise, the last round of data will be

overwritten by current data;

3 The time to execute this function is about

50uS*N keys @32M and 340 uS*N keys

@24M;

4. Description for Global Variable SOCAPI_ToucKeyStatus

1) Global variables are declared in the head file S_TouchKeyCFG.c

① Unsigned char xdata SOCAPI_ToucKeyStatus;

 SOCAPI_ToucKeyStatus Bit7 of 1 indicates that current round of key scanning is completed;

2) This variable is called in the user’s main program

For if(SOCAPI_ToucKeyStatus&0x80), call TouchKeyScan(void) for algorithm data processing and give

the key value;

3) Be sure to clear the mark before enabling the scanning of the touch keys.

Clear one round of scanning mark SOCAPI_ToucKeyStatus &=0x7f;

5. Description for Returned Value of LIB API Functions

1) Returned Value of TouchKeyScan(void) function:

Bit 1 of the returned value indicates that there is the key in this channel and 0 indicates that there is no key.

If double keys are enabled and triggered, two bit positions will be initiated.

Data Bit Bit30 Bit29 Bit28 Bit27 Bit26 Bit25 Bit24

Meaning
 TK30 TK29 TK28 TK27 TK26 TK25 TK24

Touch Key State (1: Valid; 0: Invalid)

Data Bit Bit23 Bit22 Bit21 Bit20 Bit19 Bit18 Bit17 Bit16

Meaning
TK23 TK22 TK21 TK20 TK19 TK18 TK17 TK16

Touch Key State (1: Valid; 0: Invalid)

Data Bit Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8

Meaning
TK15 TK14 TK13 TK12 TK11 TK10 TK9 TK8

Touch Key State (1: Valid; 0: Invalid)

Data Bit Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Meaning
TK7 TK6 TK5 TK4 TK3 TK2 TK1 TK0

Touch Key State (1: Valid; 0: Invalid)

Note: The return type of the function is unsigned long int; TKn is for touch channel, see corresponding

specifications for details.

6. Open the project file and copy “lib” folder in the project folder

Page 16 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

7. Open the project file in Keil, and set up Code range and XDATALEN EQU xxxH

For the objectives of the settings, see SinOne MCU notes Vx.xx.PDF file.

(There is no need to set up this parameter for partial 92/95F series chips, please read corresponding

specifications carefully)

8. Set up XDATALEN

Note: It is used in STARTUP.A51 to clear the external XData; for XData size of specific model, see

Page 17 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

corresponding specifications.

9. Add the library file LIB and S_TouchKeyCFG.C file to the project

1) Add the library file LIB and S_TouchKeyCFG.C to the project from LIB folder of SinOne library data.

The following figure takes T1 library as an example: (Operations of T2 library is the same)

Note: Carefully select L or S (big end compilation or small end compilation), as shown in the figure below:

10. Add the head file reference to the main program file

Page 18 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

11. Replace the configuration file S_TOUCHKEYCFG.H generated by TK touch debugging upper computer in LIB

folder

A complete SinOne touch high-sensitivity software library has been added to the project.

Note: It is required to set IO interface of TK as strong push-pull output high in the application program.

3.3.2 Porting of High-reliability Touch Software

1. Introduction to Library File

1) High-reliability File (SC95F8XXX_HighReliability_Lib_T1_Vx.x.x.LIB)

File Application Description

SC95F8XXX_HighReliabil

ity_Lib_T1_Vx.x.x.lib

Library file, to realize the detection

algorithm of touch keys

Sensormethod.h Head file, to provide the interface

function for user to call

The declared functions are

available for external call

S_TouchKeyCFG.C C file, to realize the interaction

between the touch parameters and

the library

No need to modify

S_TOUCHKEYCFG.H

Head file, to provide the macro

definition of TouchKey function

The user can modify partial

macro definitions to change

the settings of TouchKey

register

2. Resources used for Lib

1) The size of resources occupied by LIB library (RAM and ROM)

Library Series RAM Occupied Memory ROM Occupied Memory

Size occupied of

SC95F8XXX_Reliability

_Lib and

S_TouchKeyCFG.C

data area: 40.2 bytes;

Xdata area: 23 Bytes; unrelated to the

number of keys; all required to use;

Xdata area: 13 Bytes for each key; for

5 keys:

Data area 40.2 bytes, xdata area

23+5*13=88 byte

The size of ROM used by

the library is about 3.2K,

and adding or reducing

several keys may not

influence the size basically,

and the difference is no

more than 200byte

Note: The memory size of each chip library has little difference, and the specific memory size is subject

to SinOne data.

Page 19 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

2) Interrupt: Only use TK for interruption and the priority by default

Interrupt

Source

Interrupt

Priority

Interrupt Vector Inquire Priority Interrupt

Number (C51)

Mark Clear

Mode

TK 低 005BH 12 11 H/W Auto

Note: The library uses touch interruption with low priority and there is no nested function in the

interrupt service program with the execution time of 6.8us.

3) Meanings of the Parameters in the S_TouchKeyCFG.C file

Parameter Type Value Description

SOCAPI

_SET_TKCFG1
Unsigned 8-bit

integer constant

The default

value is

recommended

Description for the control

register TKCFG1

SOCAPI

_SET_TKCFG2 Unsigned 8-bit

integer constant

CTIME

= 0x03 to

0x0f is

recommended

Description for the control

register TKCFG2

SOCAPI

_SET_TKCFG3
Unsigned 8-bit

integer constant

The default

value is

recommended

Description for the control

register TKCFG3

SOCAPI

_SET_TouchKey_Tot

al

Unsigned 32-bit

integer constant

1~23 Set the number of touch keys

SOCAPI_SET_Touch

Key_Channel

Unsigned 32-bit

integer constant

Depending on

the touch key

channel

selected by the

user

Select the touch key channel;

Bit0~Bit23 corresponds to

TK0~TK23;

1 is for TK channel; 0 is for IO;

0000 0000 0000 0101: TK0 and

TK2 are for TK, others for IO;

The number of the channel

selected by SOCAPI

_SET_TouchKey_Channel shall

be the same as that of

SOCAPI_SET_TouchKey_Tota

l

SOCAPI

_SET_TouchKeyCO

NFIRM_CNT

Unsigned 8-bit

integer constant

Recommendati

on: 5-40, 10

times is

preferred

Key confirmation time.

This key that is scanned for

successive

SOCAPI_SET_TouchKey

CONFIRM_CNT rounds can be

considered as being pressed by

the key; the larger value may

result in the slower key

response;

SOCAPI

_SET_NOISE_Thres

hold

Unsigned 8-bit

integer constant

Recommendati

on: 20-40

Set the noise value

SOCAPI

_SET_FINGER_Thre

shold

Unsigned 8-bit

integer constant

Set according

to the data

collected

Set the finger threshold. Use

SOC Touch KeyTool to collect

data and take *60% of diff

value after pressing with 10mm-

diameter copper pillar, and

keep the ration of the finger

threshold to the noise value be

more than 5. Match the number

of group elements with that of

Page 20 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

the touch key configured

3 Description for Calling Lib API S_TouchKeyCFG.c

Function Application Description

TouchKeyInit(void)

Initialize the touch keys

1. Call once after power-on and reset;

2. This function configures the user-

selected key channel and key

parameters by using

S_TOUCHKEYCFG.H parameters

and initialize the Baseline;

3. The time to execute this function

depends on the number of the key, key

scan time and auto calibration times;

approximately time for every N more

keys:

12M basic frequency: 54*N keys

16M basic frequency: 48*N keys

32M basic frequency: 45*N keys

TouchKeyRestart(void)

Enable the scan of the

touch keys

1. The user’s main program controls

when the key scanning is initiated;

2. After the key scanning is initiated

and before the scanning of the touch

keys is completed, do not operate the

touch key channel, such as IO of touch

key channel, or else, the touch key

function can not be realized.

Unsigned long int

TouchKeyScan(void)

Process the algorithm of

the touch keys

1. Call the algorithm after one round

scan of the touch key is completed;

2. TouchKeyRestart() can not be

recalled before this function is called by

the user; otherwise, the last round of

data will be overwritten by current

data;

3 The time to execute this function: The

time for algorithm execution is

positively related to the number of the

keys.。

N Keys about (240*N) us@12M.

4. Descriptions for Global Variable SOCAPI_ToucKeyStatus

1) Global variables are declared in the head file S_TouchKeyCFG.c

Unsigned char xdata SOCAPI_ToucKeyStatus;

SOCAPI_ToucKeyStatus Bit7 of 1 indicates that current round of key scanning is completed;

2) This variable is called in the user’s main program

For if(SOCAPI_ToucKeyStatus&0x80), call TouchKeyScan(void) for algorithm data processing and give

the key value;

3) Be sure to clear the mark before enabling the scanning of the touch keys.

Clear one round of scanning mark SOCAPI_ToucKeyStatus &=0x7f;

5. Description for Returned Value of LIB API Functions

1) Returned Value of TouchKeyScan(void) function:

Bit 1 of the returned value indicates that there is the key in this channel and 0 indicates that there is no key.

The details are as follows:

Data Bit Bit30 Bit29 Bit28 Bit27 Bit26 Bit25 Bit24

Meaning
 TK30 TK29 TK28 TK27 TK26 TK25 TK24

Touch Key State (1: Valid; 0: Invalid)

Page 21 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

Data Bit Bit23 Bit22 Bit21 Bit20 Bit19 Bit18 Bit17 Bit16

Meaning
TK23 TK22 TK21 TK20 TK19 TK18 TK17 TK16

Touch Key State (1: Valid; 0: Invalid)

Data Bit Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8

Meaning
TK15 TK14 TK13 TK12 TK11 TK10 TK9 TK8

Touch Key State (1: Valid; 0: Invalid)

Data Bit Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Meaning
TK7 TK6 TK5 TK4 TK3 TK2 TK1 TK0

Touch Key State (1: Valid; 0: Invalid)

Note: The return type of the function is unsigned long int; TKn is for touch channel, see corresponding

specifications for details.

6. Maximum Output Time of a Key that Remains Valid

#define SOCAPI_SET_KEY_CONTI_TIME 1000 // Maximum output time of a key that remains valid

ranging from 0 to 5000 with the default value of 1000,

Output Time = 1000* Unit Scanning Time per Round

(such as 10ms) =10S

Notes:

1) TK0-TK31 refer to the touch key channels; see SC95F8XXX specifications for details.

2) In the actual application, the user can eliminate the dithering repeatedly to enhance the reliability; the key

value is valid only when it is read for two to five times consecutively.

3) It can also be judged by reading the key value:

 Double click: Press the key twice in 1S;

 Long press: Press for 2S;

7. Copy “lib” folder in the project folder

8. Open the project file in Keil, and set up Code range and XDATALEN EQU xxxH

For the objectives of the settings, see SinOne MCU notes Vx.xx.PDF file.

Page 22 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

(There is no need to set up this parameter for partial 92/95F series chips, please read corresponding

specifications carefully)

9. Set up XDATALEN

Note: It is used in STARTUP.A51 to clear the external XData; for XData size of specific model, see

corresponding specifications.

10. Add the library file LIB and S_TouchKeyCFG.C file to the project

1) Add the library file LIB and S_TouchKeyCFG.C to the project from LIB folder of SinOne library data.

Note: Carefully select L or S (big end compilation or small end compilation), as shown in the figure

below:

Page 23 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

11. Add the head file reference to the main program file

12. Modify the parameters (TKCFG1, TKCFG2 and TKCFG3 recorded in the steps of debugging high-reliability touch

parameters) and the channel and number of the touch key in S_TouchKeyCFG.h and set up the times that a touch key is valid

Page 24 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

13. Calculate the noise threshold and finger threshold according to RAW DATA in the debugging steps and modify

them in S_TouchKeyCFG.h

1) Calculate the finger threshold and noise threshold

2) Modify the noise threshold and finger threshold in S_TouchKeyCFG.h

A complete SinOne touch high-reliability software library has been added to the project.

Note: It is required to set IO interface of TK as strong push-pull output high in the application program.

3.4 Complete the Integration of User Program and SinOne Touch Software Library

3.4.1 High-sensitivity Touch Software and User Program

1) Overall Structure Relation between Main Program and Library File

 Add the library file to the project, include specific head file in the user program and call the interface functions

in the library to add the touch key functions.

 Library functions run only when the main program is called. The library file will occupy ROM, RAM, register,

interrupter and other resources without occupying timer.

 The library functions are only for touch key functions, and other control functions have to be dealt with by the

user, such as input/output, LED, digital display, communication, etc.

2) Call Process of Library Files (The call process of spring and spaced library is different, please read it

carefully)

The user can call the interface functions of library files via a certain process to obtain the key value of the touch

key.

Call Process of Spring Library File (T1 library for short)

 Set corresponding IO of TK as strong push-pull output high.

 The main program calls the interface function “TouchKeyInit()” to configure the parameters of touch key

channel and initialize the Baseline;

Calculate the finger threshold:

① Average Baseline is 6067 when there is no key;
Average finger threshold is 5885 when there is a

key;

② The data change: Baseline-Finger=6067-

5885=182；

③ SOCAPI_KEY3_FINGER_THRESHOLD: Baseline-
Finger; So the theoretical value of

SOCAPI_KEY3_FINGER_THRESHOLD: 182；

Considering the contact surface of the finger, the
theoretical value*0.6 is recommended, so the valid
finger threshold is 182*0.6=109;

Calculate the noise threshold:

① Average Baseline is 6067 when there is no
key;
Average finger threshold is 5885 when

there is a key;

② Peak value when there is no key
NoiseHigh=6071,NoiseLow =6061

③ Data change: 6071-6061=10；

SOCAPI_SET_NOISE_THRESHOLD: 10;
Collect the noise threshold of all touch
channels, and take the largest value as the
noise threshold of all channels, ranging from
20 to 40.

Page 25 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

 The main program views the global variable SOCAPI_ToucKeyStatus&0x80 to judge if one round of touch key

scan is completed;

 The main program calls the interface function “TouchKeyScan()” to read the touch key value;

 The main program calls “TouchKeyRestart()” to start new round of scan.

(The purple part in the figure below refers to the library file, and others represent user’s programs)

Call Process of Spaced Library File (T2 library for short)

 Set corresponding IO of TK as strong push-pull output high.

 The main program calls the interface function “TouchKeyInit()” to configure the parameters of TouchKey

channel and initialize the Baseline;

 If the number of keys is more than 8, the main program will judge if the half round of touch key scanning has

been completed by checking the global variable SOCAPI_ToucKeyStatus&0x40; if it is completed, go to complete

the display of next cycle and the scanning of the second half round of touch key.

 The main program views the global variable SOCAPI_ToucKeyStatus&0x80 to judge if one round of TouchKey

scan is completed;

 The main program calls the interface function “TouchKeyScan()” to read the TouchKey value;

 What needs to be emphasized in particular is that, after calling TouchKeyRestart() to start scanning the keys, do

not display the data before one round or half round of the scanning is completed.

TouchKeyInit()

(Initialize Touch Key Parameters)

Deal with touch key value

Start TouchKeyRestart(); start one round

of scan

Deal with other function modules

(Task 0 Task 1...Task n)

Deal with display parts

SOCAPI_ToucKeyStatus.Bit7=0

(Clear the sign that one round of key scan is completed)

Key_Buf=TouchKeyScan()

(Read the Touch Key Value)

SOCAPI_ToucKeyStatus.Bit7==1

(Judge if one round of touch key scan is

completed.)

No

User Program Call Interface Function
Control Process

Page 26 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

 (The purple part in the figure below refers to the library file, and others represent user’s programs)

3) Timing Relationship between Main Program and Library File

Running the touch key library consumes partial IC resources and time, to perfectly integrate the user’s program

and library program, the main program shall comply with the following requirements:

 Provide ROM, RAM, time and other resources for library running;

 After starting the key scanning and before completing one round of scan, do not perform any operations to the

touch key channel;

If the touch key channel is output IO; or else, the touch key function will be disabled;

 Provide sufficient stack depth for main program and library functions;

 Data conversion from TouchKey scanning is realized during the process of TK interruption, but the data

algorithm is completed in the main program. The user needs to call the library function in a reasonable frequency

to avoid missing the key actions;

Notes for Software Integration:

 Running Time:

TouchKeyInit(void): The algorithm execution time will be increased/decreased with the number of keys

selected, 200~500ms@12M;

TouchKeyScan(void): The time to execute this function is related to the basic frequency of different chips,

please refer to the data in the table of 3.3

User Program Call Interface Function Control Process (Number of Keys less
than 8)

TouchKeyInit()

(Initialize Touch Key Parameters)

Key_Buf=TouchKeyScan()

(Read Touch Key Value)

Touch Key Function Processing Program

SOCAPI_ToucKeyStatus.Bit7=0

(Clear the sign that one round of key scan is completed)

Deal with display parts and complete a display

cycle

Start TouchKeyRestart(); After this function is

called, it is not allowed to call the display part

before one round of scanning is started

Other Function Module Process (Task 0 Task

1...Task n)

Clear half round of

key scanning completion

mark

(Judge if half round the scanning is completed and

the mark is not cleared?)

Yes

No

(One round of scanning is completed

or not?)

Yes

No

TouchKeyInit()

(Initialize Touch Key Parameters)

Key_Buf=TouchKeyScan()

(Read Touch Key Value)

Touch Key Function Processing Program

SOCAPI_ToucKeyStatus.Bit7=0

(Clear the sign that one round of key scan is completed)

Deal with display parts and complete a display cycle

Start TouchKeyRestart(); After this function is called,

it is not allowed to call the display part before one round

of scanning is started

Other Function Module Process (Task 0 Task

1...Task n)

(One round of scanning is completed

or not?)

Yes

Yes

User Program Call Interface Function Control Process (Number of Keys
more than 8)

Page 27 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

 Overall Code Testing

After the user completes the program call, please test the performance of related functions in detail to avoid

software conflict. If any exception occurs, look for causes in the program flow, call timing, time allocation,

stack, ROM/RAM/INT and other resources.

 Suggestions for machine debugging: Due to the difference of component performance, it is recommended

to test more PCBs after one piece of PCB has been debugged, so as to get the compromised effect of

parameters and remove the influence of materials on consistency.

3.4.2 High-reliability Touch Software and User Program

1) Overall Structure Relation between Main Program and Library File

 Add the library file to the project, include specific head file in the user program and call the interface functions

in the library to add the touch key functions.

 Library functions run only when the main program is called. The library file will occupy ROM, RAM, register,

interrupter and other resources without occupying timer.

 The library functions are only for touch key functions, and other control functions have to be dealt with by the

user, such as input/output, LED, digital display, communication, etc.

2) Call process of Library Files

The user can call the interface functions of library files via a certain process to obtain the key value of the touch

key.

 Set corresponding IO of TK as strong push-pull output high.

 The main program calls the interface function “TouchKeyInit()” to configure the parameters of TouchKey

channel and initialize the Baseline;

 The main program views the global variable SOCAPI_ToucKeyStatus&0x80 to judge if one round of touch key

scan is completed;

 The main program calls the interface function “TouchKeyScan()” to read the touch key value;

 What needs to be emphasized in particular is that, if the user shares Touchkey and LED, when calling

TouchKeyRestart() to start scanning the keys, do not display the data before the mark of

SOCAPI_TouchKeyStatus & 0X80 appears.

(The purple part in the figure below refers to the library file, and others represent user’s

programs)

1. Start TouchKeyRestart() to scan the keys.
2. If the bit7 of SOCAPI_ToucKeyStatus is set, the round of keyboard scanning is over.
3. Start up display.
4. All shows are done.
1. Start TouchKeyRestart() again and repeat.

Page 28 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

3) Timing Relationship between Main Program and Library File

Running the touch key library consumes partial IC resources and time, to perfectly integrate the user’s program

and library program, the main program shall comply with the following requirements:

 Provide ROM, RAM, time and other resources for library running;

 After starting the key scanning and before completing one run of scan, do not perform any operations to the

touch key channel;

If the touch key channel is output IO; or else, the touch key function will be disabled;

 Provide sufficient stack depth for main program and library functions

 Data conversion from TouchKey scanning is realized during the process of TK interruption, but the data

algorithm is completed in the main program. The user needs to call the library function in a reasonable frequency

to avoid missing the key actions;

Notes for Software Integration:

 Running Time:

TouchKeyInit(void): The algorithm execution time will be increased/decreased with the number of keys

selected, 200~500ms@12M;

TouchKeyScan(void): The time to execute this function is related to the basic frequency of different chips,

please refer to the data in the table of 3.3

 Overall Code Testing:

After the user completes the program call, please test the performance of related functions in detail to avoid

User Program Call Interface Function Control Process

TouchKeyInit()

(Initialize Touch Key Parameters)

Process the Display Parts after completing
all displays

Start TouchKeyRestart(); After calling this
function, it is not allowed to call the shared part of
display before completing one round of scanning

Key_Buf=TouchKeyScan()
(Read the Touch Key Value)

Touch Key Function Processing Program
SOCAPI_ToucKeyStatus.Bit7=0 Clear One Round of Key

Scanning Completion Mark)

Other Function Module Process (Task 0 Task
1...Task n)

SOCAPI_ToucKeyStatus.Bit7==1
(Judge if one round of touch key scan is completed.)

Y

N

Page 29 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

software conflict. If any exception occurs, look for causes in the program flow, call timing, time allocation,

stack, ROM/RAM/INT and other resources.

 Suggestions for machine debugging: Due to the difference of component performance, it is recommended

to test more PCBs after one piece of PCB has been debugged, so as to get the compromised effect of

parameters and remove the influence of materials on consistency.

3.4.3 Notes

1) For single-side PCB, use spring Touchkey. Because its side can also form the electric field with fingers, and

using spring TouchKey can obtain higher flexibility than using copper clad TouchKey on PCB.

2) The wire length from TouchKey pad to IC pin should not be wound too far; avoid the coupling capacitance

between wires and between wires and other high-frequency signal line.

3) The sensitivity is proportional to the area of TouchKey pad and inversely proportional to the thickness of the

enclosure. Select the appropriate touch area based on the enclosure thickness and size. Generally, glass enclosure

has higher penetration than the plastics.

4) A certain distance shall be reserved between the TouchKey pads to guarantee that finger touch will not cover 2

TouchKey pads and prevent too large parasitic capacitance of TouchKey pad.

5) The reference capacitance is the charging/discharging capacitance of SinOne TouchKey induced circuit and the

important component to realize TouchKey function. It can guarantee normal work of touch circuit with the

capacitance range of 472-104, and 103 capacitance is recommended. There is no special requirements on materials.

6) Set IO interface of TK as strong push-pull output high.

For more Layout notes, please refer to: Design Points for SinOne Touch Key MCU PCB.

3.5 Additional Functions – Dynamic Debugging Functions

Main Functions: Use SinOne touch debugging upper computer software to view the real-time data, so as to help

the user to conduct the overall evaluation of the system, understand the actual operation situations and analyze any

anomalies, etc.

3.5.1 High-sensitivity Dynamic Debugging Steps

1) Place SOC_DebugTouchKey_Lib folder in the root directory of the project

2) Add SC95F8XXX_HighSensitiveTKDynamicDebug_S/L_Vx.x.x.LIB in the user project

S/L –> refers to compile dynamic debugging library lib with small end/large end compilation, which shall be

consistent with that of the touch library S/L, as shown in the figure below.

Page 30 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

3) Include the head file in the main.c

4) Call SOCAPI_DeBugTouchKey_Init in the main function for initialization and program to the chip after

compilation

5) Open Touch Key Tool Menu and select high-sensitivity touch key and the chip type corresponding to the actual

chip, then select dynamic debugging for debugging mode and check TK channel (consistent with the channel

actually used by the project)

6) Click OK button, then click “Dynamic Debugging” button at the bottom

7) In the dynamic debugging interface, you can select “Data Type” to view the data to be viewed, “Channel Select”

to check the channel to be viewed, view the real-time data in the figure and click “Data List” to view the figure

data

Page 31 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

Note: When observing data through dynamic debugging, it is necessary to confirm if the SNR meets

the operating conditions.

SNR>5 is recommended, and SNR >10 is preferred.

SNR Calculation Mode: Dynamic debugging observation in process

Noise amplitude: The difference between the maximum and minimum value of RawData when no

finger is pressed in the standing state

Signal amplitude: The average value of RawData when the finger is pressed

SNR Calculation Mode: SNR = signal/noise, as shown in the figure above, SNR=10

8) Click “Export Date” to real-time collect data in CSV format

Page 32 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

9) Notes for Dynamic Debugging

⚫ For UART (UART0 or SSI) resources on the programming interface are used in the dynamic

debugging library, the user program must first mask partial UART (UART0 or SSI) programs,

including initialization, interrupt service functions. No UART (UART0 or SSI)-related register

and operating-related pins can be operated, among them, the model with UART0 on the

programming port also uses Timer2 as the baud rate generator , so Timer2 can not be used

either.

⚫ The channel checked for debugging the main interface shall be consistent with that in the

practical use.

⚫ 43byte idata and 501byte ROM resources are occupied for the dynamic debugging library,

please reserve sufficient resources to guarantee the debugging program work normally.

4. Appendix

I. Schematic Diagram for Application Reference (Taking SC95F8613 as an example)

Page 33 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

II. Software Reference Example

1) For the items that share TouchKey and LED, when calling TouchKeyRestart() to start scanning the keys, do not

display the data before the mark of SOCAPI_TouchKeyStatus & 0X80 appears;

2) For the items that do not share TouchKey and LED, it is unnecessary to display and scan the keys separately.

Procedure instructions are attached below

For items that share TouchKey and LED:

Main.c
void main()

{

unsigned char result =0;

SegOutState; // Initialize IO interface, displayed SEG, COM pins

ComOutState; ComAllClose; SegAllClose;

TestIOPortOut; //P17 as testing IO interface

EA = 1; // Enable global interrupts

TouchKeyInit(); //Important Step 1: Initialization functions of scanning the touch key

InitialLcd(); //Initialize the displayed section

while(1)

{

WDTCON |= 0x10; //Clear watchdog

//Important Step 2: Scan one round of touch key mark, whether to call TouchKeyScan() subject to the flag position

if(SOCAPI_TouchKeyStatus & 0X80)

{

//Important Step 3: Clear the //flag position, external clear is required.

SOCAPI_TouchKeyStatus &= 0X7F;

exKeyValue = TouchKeyScan(); //Important Step 4: Analyze key data and return the results

//// If there is any key, update and display the cache data

{

UpdateLcdBufFunc(); //Update and display the data

////If there is no display, directly operate IO interface and view the results with the oscilloscope

TESTIO=~TESTIO;

}

 //Important Step 4: After bSensorCycleDone flag position is raised, the internal detection keys will be stopped, and time

slice will be set aside to display the data

 {

 DisplayData(); //After scanning the touch keys, start to display immediately

 OpenPwm(); //Enable PWM used for display

 }

 }

 }

}

Display.c

void DisplayData(void)

{

 ComAllClose; SegAllClose;

 if(isLcdComflag == 0) //Display COM0 data

 {

 SetSegData(gIsLcdDataBuf[0]);

 seg8 = gIsLcdDataBuf[4] & 0x01;

Page 34 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

 seg9 = gIsLcdDataBuf[4] & 0x02; COM0 = 0;

 isLcdComflag = 1;

 }

 else if(isLcdComflag ==1) //Display COM1 data

 {

 SetSegData(gIsLcdDataBuf[1]);

 seg8 = gIsLcdDataBuf[5] & 0x01;

 seg9 = gIsLcdDataBuf[5] & 0x02;

 COM1 = 0;

 isLcdComflag = 2;

 }

 else if(isLcdComflag ==2) //Display COM2 data

 {

 SetSegData(gIsLcdDataBuf[2]);

 seg8 = gIsLcdDataBuf[6] & 0x01;

 seg9 = gIsLcdDataBuf[6] & 0x02;

 COM2 = 0;

 isLcdComflag = 3;

 }

 else if(isLcdComflag ==3) //Display COM3 data

 {

 SetSegData(gIsLcdDataBuf[3]);

 seg8 = gIsLcdDataBuf[7] & 0x01;

 seg9 = gIsLcdDataBuf[7] & 0x02;

 COM3 = 0;

 isLcdComflag = 4;

 }

 else

 {

 if(isLcdComflag == 4) //COM display is completed, start to scan the key

 {

 ClosePwm(); //Disable PWM used for display.

 isLcdComflag = 0;

//Important Step 5: After all displays are completed, it is required to recall TouchKeyRestart();

start to scan the key, otherwise, //it will not scan the key, at the same time, some IO interfaces

hared with TK need to be closed to maintain the consistency of key detection.

 ComAllClose;

 SegAllClose;

 TouchKeyRestart();

 }

 }

}

Items that do not share with TouchKey and LED

Main.c

void main()

{

 unsigned char result =0;

 SegOutState; // Initialize IO interface, displayed SEG, COM pins

 ComOutState; ComAllClose; SegAllClose;

Page 35 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

 TestIOPortOut; //P17 as testing IO interface

 EA = 1; // Enable global interrupts

 TouchKeyInit(); //Important Step 1: Initialization functions of scanning the touch key

 InitialLcd(); // Initialize the displayed section

 while(1)

 {

 WDTCON |= 0x10; //Clear watchdog if(TimerFlag_1ms==1)

 {

 TimerFlag_1ms=0;

 if(SOCAPI_TouchKeyStatus&0x80) //Important Step 2: Scan one round of touch key

mark, whether to call

 TouchKeyScan() depends on if the flag position is

raised

 {

 SOCAPI_TouchKeyStatus &=0x7f; //Important Step 3: Clear the flag position, external

clear is required.

 exKeyValueFlag = TouchKeyScan();

 ChangeTouchKeyvalue();

 UpdateLcdBufFunc(); // Update and display the data

 TouchKeyRestart(); //Start new round of switching TimerFlag_1ms=0;

 }

 BuzzerWork();

 //*******************Buzzer Drive Functions**********************

 if(++Timercount>=10)

 {

 Timercount = 0;

 DataUpdateCount++;

 }

 UpdateDisplay(); //*******************Processing Display

Contents*********************

 }

 }

}

void DisplayData(void)

{

 ComAllClose;

 if(isLcdComflag == 0) //Display COM0 data

 {

 LedSetSegData(LcdDisplayBuf[gIsLedDataBuf[0]]); COM0 = 0;

 isLcdComflag = 1;

 }

 else if(isLcdComflag ==1) //Display COM1 data

 {

 LedSetSegData(LcdDisplayBuf[gIsLedDataBuf[5]]); COM1 = 0;

 isLcdComflag = 2;

 }

 else if(isLcdComflag ==2) //Display COM2 data

 {

 LedSetSegData(LcdDisplayBuf[gIsLedDataBuf[1]]); COM2 = 0;

 isLcdComflag = 3;

 }

 else if(isLcdComflag ==3) //Display COM3 data

 {

 LedSetSegData(gIsLedDataBuf[3]); COM3 = 0;

Page 36 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

 isLcdComflag = 4;

 }

 else if(isLcdComflag ==4) //Display COM4 data

 {

 LedSetSegData(gIsLedDataBuf[4]); COM4 = 0;

 isLcdComflag = 5;

 }

 else if(isLcdComflag ==5) //Display COM5 data

 {

 LedSetSegData(LcdDisplayBuf[gIsLedDataBuf[2]]); COM5 = 0;

 isLcdComflag = 6;

 }

 else if(isLcdComflag ==6)

 {

 isLcdComflag = 0; ComAllClose;

 }

}

Page 37 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

5. Version Change History

Version Change History Date

V1.0 Document formatting Dec. 2022

Page 38 of 38 V1.0
 http://www.socmcu.com

SinOne

SinOne SC95F Series TouchKey MCU Application Guide

Statement

Shenzhen SinOne Microelectronics Co., Ltd. (hereinafter referred to as SinOne) reserves the right to change, correct, enhance,

modify and improve SinOne products, documents or services at any time without prior notice. SinOne believes that the

information provided is both accurate and reliable. The information in this document becomes available since November

2021. In the actual production design, please refer to the latest data manual of each product and other relevant materials.

	1. Overall Description of SinOne SC95F Series Touchkey MCU Application Guidelines
	2. Introduction to SinOne Touch Library
	2.1 Application Types of Touch Library
	2.2 General Steps for Touch Project Development
	2.3 Introduction to SinOne Touch Library Files

	3. Touch Development Process
	3.1 Install the Development Tool
	3.2 Debugging Touch Parameters
	3.2.1 High-sensitivity Debugging Touch Parameters

	3.3 Realizing Function Test of SinOne Software Library
	3.3.1 Porting of High-sensitivity Touch Software
	3.3.2 Porting of High-reliability Touch Software

	3.4 Complete the Integration of User Program and SinOne Touch Software Library
	3.4.1 High-sensitivity Touch Software and User Program
	3.4.2 High-reliability Touch Software and User Program
	3.4.3 Notes

	3.5 Additional Functions – Dynamic Debugging Functions
	3.5.1 High-sensitivity Dynamic Debugging Steps

	4. Appendix
	5. Version Change History
	Statement

